geosnap.analyze.ModelResults.predict_markov_labels¶
- ModelResults.predict_markov_labels(w_type='queen', w_options=None, base_year=None, new_colname=None, time_steps=1, increment=None, seed=None, verbose=True)[source]¶
Predict neighborhood labels from the model in future time periods using a spatial Markov transition model
- Parameters:
- w_type
str, optional type of spatial weights matrix to include in the transition model, by default “queen”
- w_options
dict, optional additional keyword arguments passed to the libpysal weights constructor
- base_year
intorstr, optional the year from which to begin simulation (i.e. the set of labels to define the first period of the Markov sequence). Defaults to the last year of available labels
- new_colname
str, optional new column name to store predicted labels under. Defaults to “predicted”
- time_steps
int, optional the number of time-steps to simulate, by default 1
- increment
strorint, optional styled increment each time-step referrs to. For example, for a model fitted to decadal Census data, each time-step refers to a period of ten years, so an increment of 10 ensures that the temporal index aligns appropriately with the time steps being simulated
- w_type
- Returns:
geopandas.GeoDataFramelong-form geodataframe with predicted cluster labels stored in the new_colname column